Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress.

نویسندگان

  • Kolby Jardine
  • Jeffrey Chambers
  • Eliane G Alves
  • Andrea Teixeira
  • Sabrina Garcia
  • Jennifer Holm
  • Niro Higuchi
  • Antonio Manzi
  • Leif Abrell
  • Jose D Fuentes
  • Lars K Nielsen
  • Margaret S Torn
  • Claudia E Vickers
چکیده

The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unifying conceptual model for the environmental responses of isoprene emissions from plants

BACKGROUND AND AIMS Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empir...

متن کامل

Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability.

The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic organisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient CO2 concentrations, we demonstrate that photo...

متن کامل

Differential response of aspen and birch trees to heat stress under elevated carbon dioxide.

The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO(2) and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO(2) protected photosynthesis of both species against moderate heat stress. Elevated CO(2) increased carboxylation capacity, photosynthetic electron transp...

متن کامل

Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar– Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, int...

متن کامل

Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow.

Isoprene emission from leaves is dynamically coupled to photosynthesis through the use of primary and recent photosynthate in the chloroplast. However, natural abundance carbon isotope composition (delta(13)C) measurements in myrtle (Myrtus communis), buckthorn (Rhamnus alaternus), and velvet bean (Mucuna pruriens) showed that only 72% to 91% of the variations in the delta(13)C values of fixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 4  شماره 

صفحات  -

تاریخ انتشار 2014